
I AUTOCUISEUR

TPC1 2025/2026 – Correction du DS Physique n°3 (4h)

I ) Autocuiseur

Figure 1 – Autocuiseur

L’autocuiseur (figure 1), couramment appelé « cocotte-minute », a été inventé en 1679
par le français Denis Papin.

Il s’agit d’un dispositif de cuisson des aliments sous une pression supérieure à la pression
atmosphérique. L’augmentation de pression s’accompagne d’une augmentation de la tem-
pérature maximale atteinte, ce qui accélère la cuisson des aliments. Une soupape permet
de limiter la pression intérieure en évacuant la vapeur d’eau formée et assure une cuisson
à température constante.

L’autocuiseur contient toujours un peu d’eau en plus des aliments à cuire. La cuisson se
déroule alors en trois étapes :
◦ un régime transitoire de montée en pression (et en température) du contenu de l’auto-

cuiseur ;
◦ un régime de cuisson durant lequel la pression et la température de la vapeur d’eau

restent constantes (la vapeur qui s’échappe par la soupape est compensée par la vapo-
risation de l’eau contenue dans l’autocuiseur) ;

◦ une décompression, souvent rapide, pour arrêter la cuisson.

Figure 2 – Étapes de cuisson dans un autocuiseur

I.1) La soupape

I.1.a) Masse de la soupape

La soupape d’échappement de la vapeur est un cylindre de masse m placé sur le couvercle de l’autocuiseur. Elle peut coulisser
verticalement sans frottement sur un cylindre creux qui fait communiquer l’intérieur de l’autocuiseur avec l’extérieur (figure
3).

Figure 3 – Schéma de fonctionnement de la soupape d’échappement
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I.1 La soupape I AUTOCUISEUR

Lorsque la pression augmente dans l’autocuiseur, la soupape monte, ce qui permet à la vapeur de s’échapper. En régime
permanent, la soupape reste à hauteur constante (figure 3c) et est en équilibre sous l’effet de son poids et des forces de
pression.

La pression extérieure vaut Pext = 1,01× 105 Pa. On note Pint la pression à l’intérieur de l’autocuiseur.

La soupape est pesée sur une balance de cuisine (figure 4a) dont un extrait de la notice est donné (figure 4b).

Figure 4 – Balance de pesée

1) En tenant compte de l’indication de précision mentionnée par la notice de la balance, écrire la valeur numérique de la
masse m de la soupape. L’évaluation de son incertitude-type associée serait-elle de type A ou de type B ? Aucun calcul
d’incertitude n’est demandé par la suite.

Correction

Masse de la soupape par lecture graphique :

m = (39± 1) g ou m =

(
39± 1√

3

)
g ou m =

(
39± 0,5√

3

)
g

selon les appréciations. C’est une incertitude de type B, car une incertitude de lecture et pas statistique.

I.1.b) Équilibre de pression

Figure 5 – Indications sur l’au-
tocuiseur

La section du conduit cylindrique d’évacuation de la vapeur vaut S = 7,00 mm2. Des
indications de pression et le volume de l’autocuiseur sont gravés sur celui-ci (figure 5).

On note g = 9,81 m · s−1 la valeur du champ de pesanteur.

2) Représenter, à l’équilibre, la soupape et les trois forces qui s’exercent sur elle.

Correction

Schéma des forces.

3) Déterminer l’expression littérale de Pint en fonction de Pext, m, g et de S. Déterminer
la valeur numérique de Pint.

Correction
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I.2 Mesures dans l’autocuiseur et exploitation I AUTOCUISEUR

À l’équilibre, la somme des forces exercées sur la soupape est nulle.

PintS − PextS −mg = 0 ⇒ Pint = Pexp +
mg

S
= 1,55× 105 Pa

4) L’une des indications gravées sur l’autocuiseur permet-elle de confirmer ce résultat ? À
quoi correspond vraisemblablement l’autre indication de pression ?

Correction

En lisant les indications, on peut deviner les significations suivantes :
◦ PS est la pression « standard » égale à 1 bar ou 100 kPa

◦ PF est la « surpression » possible avec l’autocuiseur 55 kPa

◦ On retrouve : Pint = PS + PF = 55 kPa

I.2) Mesures dans l’autocuiseur et exploitation

On verse un volume Ve = 1,00 L d’eau dans l’autocuiseur que l’on ferme et que l’on place sur une plaque chauffante délivrant
la puissance thermique Pth = 1,50 kW.

Des capteurs placés dans l’autocuiseur permettent d’enregistrer la température de l’eau, la température de la phase vapeur
ainsi que la pression de la phase vapeur au cours du temps (figure 6).

Figure 6 – Mesure de températures et de pression dans l’autocuiseur

On note :
◦ me la masse de l’eau,
◦ ce = 4,18 kJ · kg−1 ·K−1 la capacité thermique massique de l’eau,
◦ Ca = 1,23 kJ ·K−1 la capacité thermique de l’autocuiseur.

L’eau et l’autocuiseur sont constamment à la même température et on note Ti leur température initiale.

I.2.a) Premier modèle

Dans un premier temps, on suppose que toute la puissance thermique Pth est transférée à l’autocuiseur et à l’eau.

5) Relever sur la figure 6 la température initiale Ti.

Correction

On lit graphiquement Ti = 20 ◦C

6) On note ∆t la durée au bout de laquelle l’eau et l’autocuiseur atteignent la température Tf = 100 ◦C. Déterminer
l’expression littérale de la durée ∆t en fonction de me, ce, Ca, Tf , Ti et de Pth. Déterminer la valeur numérique de ∆t.
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I.2 Mesures dans l’autocuiseur et exploitation I AUTOCUISEUR

Correction

Par un bilan énergétique sur l’ensemble { autocuiseur + eau }

∆Hsyst = Pth∆t ⇒ (Ca +mece) (Tf − Ti) = Pth∆t ⇒ ∆t =
(Ca +mece) (Tf − Ti)

Pth
= 289 s

7) Cette durée est-elle compatible avec les données de la figure 6 ? Si non, donner deux arguments permettant de justifier cet
écart.

Correction

Sur le graphique, on lit un temps de montée en température un peu plus long : ∆t = 350 s. On peut probablement
l’expliquer par :
◦ les pertes du chauffage de la plaque qui chauffent également l’air et les meubles alentours
◦ le transfert de chaleur de l’autocuiseur vers l’air extérieur plus froid
◦ la non prise en compte de l’air intérieur à l’autocuiseur à chauffer également

I.2.b) Second modèle

Dans un second temps, on tient compte des pertes thermiques de l’autocuiseur vers son environnement au cours du temps
sous la forme d’une puissance thermique de fuite Pf = k

[
T(t)− Text

]
où k et Text sont des constantes.

8) En effectuant un bilan thermique sur le système { eau + autocuiseur } pendant l’intervalle de temps infinitésimal dt,
montrer que la température du système satisfait l’équation différentielle :

dT

dt
+

T − Text

τ
=

Pth

τk
(1)

et déterminer l’expression de τ en fonction de me, ce, Ca et de k.

Correction

Bilan thermique sur l’ensemble { autocuiseur + eau } avec puissance de fuite :

dHsyst = Pthdt− Pfdt ⇒ (Ca +mece) dT = (Pth − Pf ) dt ⇒ τ =
Ca +mece

k

9) On cherche une solution de l’équation 1 sous la forme T(t) = A + B e−t/τ . Déterminer les expressions littérales de A et
de B en fonction des paramètres de l’équation 1.

Correction

On identifie la solution particulière :

A = Text +
Pth

k

On déterminer B à l’aide des conditions initiales :

T(0) = Text = A+B ⇒ B = −Pth

k

Le tracé de la solution de l’équation 1 est présenté sur la figure 7.
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I.2 Mesures dans l’autocuiseur et exploitation I AUTOCUISEUR

Figure 7 – Évolution de la température intérieure en fonction du temps

10) Déduire de la figure 7 la durée ∆t′ nécessaire pour atteindre la température Tf = 100 ◦C. Le résultat est-il cohérent avec
la durée ∆t trouvée précédemment ? Justifier. Le résultat est-il satisfaisant ? Justifier.

Correction

Par lecture graphique, il faut ∆t′ = 325 s pour atteindre les 100 ◦C. Ce résultat est du même ordre de grandeur que ∆t
précédemment trouvé mais plus grand, et donc plus proche de la valeur réelle. C’est assez logique puisque l’on a tenu
compte d’une partie des pertes qui ralentissent le chauffage de l’autocuiseur (mais pas de toutes).

I.2.c) Augmentation de la vitesse de cuisson

On observe sur la figure 6 qu’au-delà de 500 s, le régime permanent de cuisson est atteint. On note Tp la température de
cuisson et Pp la pression de cuisson en régime permanent.

11) Relever sur la figure 6 la température de cuisson Tp et la pression de cuisson Pp en régime permanent.

Correction

On relève sur le graphique : Tp = 110 ◦C, Pp = 1,52× 105 Pa.

12) Préciser la raison thermodynamique pour laquelle la température et la pression sont devenues constantes.

Correction

La coexistence des deux phases liquide et vapeur impose un palier de température et de pression de changement d’état.

La pression de vapeur saturante de l’eau dépend de la température, comme le montre la figure 8.
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I.2 Mesures dans l’autocuiseur et exploitation I AUTOCUISEUR

Figure 8 – Évolution de la pression de vapeur saturante en fonction de la température

13) Reproduire cette courbe sur votre copie en y positionnant :
◦ le point de cuisson en régime permanent dans un autocuiseur (Tp, Pp) ;
◦ le point de cuisson à ébullition sous pression ambiante (Ta, Pa) (qui correspond par exemple à la cuisson de pâtes dans

une casserole d’eau bouillante).

Correction

La figure 9 donne le facteur de vitesse de la cuisson en fonction de la température de cuisson. La référence est prise à 100 ◦C.
Par exemple, une cuisson à 80 ◦C a un facteur de cuisson de 0,25 et est donc quatre fois plus lente qu’à 100 ◦C.

N. Perrissin | 2025/2026 | TPC1, Mermoz Page n°6/16



I.2 Mesures dans l’autocuiseur et exploitation I AUTOCUISEUR

Figure 9 – Évolution du facteur de cuisson en fonction de la température

14) Sachant que la cuisson de légumes dans une casserole d’eau bouillante à l’air libre s’est faite en 20 minutes, estimer la
durée nécessaire à la cuisson de la même quantité de légumes dans un autocuiseur.

Correction

Avec Tp = 112 ◦C, on lit un facteur de cuisson d’environ 2,5. Donc si une cuisson standard prend 20 minutes, la cuisson

avec l’autocuiseur prendra environ
20

2,5
= 8 minutes.

I.2.d) Estimation du débit de vapeur

Lorsque l’autocuiseur fonctionne en régime permanent, la puissance thermique de la plaque chauffante est réduite à Pth =
600 W. Un jet de vapeur d’eau s’échappe continûment par la soupape.

La puissance fournie par la plaque chauffante sert en partie à vaporiser l’eau présente dans l’autocuiseur et est en partie
perdue, les pertes étant de l’ordre de Pf = 350 W.

On admet que la quantité d’eau vaporisée pendant la cuisson reste suffisamment faible pour considérer le volume d’eau liquide
présent dans l’autocuiseur comme constant et égal à Ve = 1,00 L (hypothèse H).

On suppose que le gaz présent dans l’autocuiseur est uniquement constitué de vapeur d’eau. Dans les conditions de cuisson,
l’enthalpie massique de vaporisation de l’eau vaut ∆vaph = 2,23 MJ · kg−1

15) Expliquer pourquoi il apparaît des gouttelettes d’eau liquide dans le jet de vapeur à sa sortie par la soupape.

Correction

Le jet de vapeur qui sort de la soupape est chaud. Au contact de l’air extérieur plus froid, l’eau se condense en micro-
gouttelettes d’eau.

16) Déterminer, à l’aide d’un bilan enthalpique, le débit massique du jet de vapeur d’eau en mg · s−1.

Correction

Avec les hypothèses de l’énoncé, de régime stationnaire établi et que le volume d’eau liquide dans l’autocuiseur est constant,
on peut considérer que le débit massique de vapeur qui s’échappe correspond à la masse d’eau liquide vaporisée par seconde
grâce par apport thermique. Bilan enthalpique sur un intervalle élémentaire dt :

dHsyst = Pthdt− Pfdt ⇒ dm×∆vaph = (Pth − Pf ) dt ⇒ Dm =
dm

dt
=

Pth − Pf

∆vaph
= 112 mg · s−1

17) En déduire la masse d’eau perdue dans le jet pour une cuisson de 10 minutes. L’hypothèse H est-elle toujours vérifiée
sur des durées de cuisson usuelles de 30 minutes ?

Correction

Masse d’eau perdue en 10 minutes : Dm × 10 min = 67 g

Masse d’eau perdue en 30 minutes : Dm × 30 min = 202 g

Pour 30 minutes de cuisson, la masse d’eau perdue correspond à un volume d’environ 0,2 L, ce qui correspond à un
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II EXPÉRIENCE DE RÜCHARDT

cinquième de la quantité initiale. L’hypothèse de conservation du volume d’eau n’est donc plus valable à cette échelle de
temps.

II ) Expérience de Rüchardt

Ce sujet propose une étude de l’expérience de Rüchardt. Elle consiste à placer un gaz dans un récipient étanche muni d’un
tube (figure 10). On ferme le tout par un piston qui peut librement coulisser dans le tube. Le diamètre du piston est du
mieux possible égal à celui du tube, ce qui assure une étanchéité (pas de fuite de gaz).

Sous l’action de son poids, le piston commence à descendre. Ceci fait augmenter la pression dans le récipient, ce qui finit par
arrêter la descente du piston, et par le faire remonter. Il s’en suit une série d’oscillations, comme on peut le voir sur la figure
11.

Figure 10 – Photographie et schéma de l’expérience

Proposée par Rüchardt en 1929, perfectionnée à plusieurs reprises, cette expérience et ses variantes ont permis des mesures
extrêmement précises du coefficient adiabatique γ de divers gaz (aucune connaissance sur γ n’est nécessaire). Pour le gaz
utilisé dans l’expérience, la valeur théorique est γ = 1, 4.

Formulaire :
(1 + z)

a ≃ 1 + az avec : z ≪ 1

II.1) Détermination de la période des oscillations

On utilise les notations de la figure 10. En particulier :
◦ V0 est le volume initial de l’ensemble du gaz (récipient + partie dans le tube sous le piston).
◦ V (t) est le volume de ce même gaz, mais à un instant t quelconque. La pression du gaz est notée P(t) et sa température
T(t).

◦ La pression atmosphérique est P0. C’est aussi la pression dans le récipient à l’instant initial.
◦ La section du tube est notée Σ.
◦ La masse du piston est m et l’intensité de la pesanteur est g.
◦ −→ex est un vecteur unitaire descendant.

On admet que la résultante des forces de pression qui s’exercent sur le piston s’écrit :

−→
Fp =

[
P0 − P(t)

]
Σ−→ex

On fait finalement l’hypothèse qu’il n’y a aucun échange thermique entre le gaz et le milieu extérieur (parois parfaitement
isolante thermiquement). On dit que le gaz évolue de manière adiabatique. Dans ce cas, la loi de Laplace (admise) affirme
que :

P(t)× V γ(t) = P0 × V γ
0

18) Établir la relation entre V (t), V0, la section Σ et l’abscisse x du piston (telle que définie sur la figure 10).

N. Perrissin | 2025/2026 | TPC1, Mermoz Page n°8/16



II.1 Détermination de la période des oscillations II EXPÉRIENCE DE RÜCHARDT

Correction

En remarquant que le volume V (t) du gaz enfermé diminue à mesure que x augmente, on a directement :

V (t) = V0 − Σx

19) En utilisant la loi de Laplace et un développement limité valable pour Σx ≪ V0, montrer que la résultante des forces de
pression qui s’exercent sur le piston se met sous la forme :

−→
Fp = −γkx−→ex

avec k une constante à exprimer en fonction des données du problème.

Correction

D’après la loi de Laplace :

P(t) = P0 ×
(

V0

V (t)

)γ

= P0 ×
(

V0

V0 − Σx

)γ

= P0 ×
(
1− Σx

V0

)−γ

≃ P0 ×
(
1 + γ

Σx

V0

)
On en déduit :

−→
Fp =

[
P0 − P(t)

]
Σ−→ex ≃ −γkx−→ex avec : k =

P0Σ
2

V0

II.1.a) Méthode de Rüchardt

En plus de
−→
Fp, la seule autre force prise en compte comme agissant sur le piston est la force de pesanteur.

20) À l’aide d’une étude mécanique, établir une équation différentielle portant sur x(t). L’écrire sous une forme canonique
en faisant intervenir la pulsation propre ω0. Donner l’expression de ω0 en fonction de k, γ et m.

Correction

On applique le PFD sur lamasse dans le référentiel du laboratoire supposé galiléen. On projette le PFD selon −→ex.

ẍ = mg − γkx ⇒ ẍ+ ω2
0x = g ⇒ ω0 =

√
γk

m

21) Établir l’expression de la solution x(t) de cette équation différentielle, en fonction de ω0, t, m, g, γ, k, ainsi que de deux
constantes A et B qu’on ne cherchera pas à déterminer.

Correction

La solution s’écrit :
x(t) = A cos(ω0t) +B sin(ω0t) +

g

ω2
0

22) Pour l’expérience considérée ici,
m

k
= 4,01× 10−2 s2. On mesure une période des oscillations T0 = 1,08 s. Déterminer la

valeur de γ trouvée expérimentalement.

Correction

On a :

ω2
0 =

(
2π

T0

)2

=
γk

m
⇒ γ =

m

k

(
2π

T0

)2

= 1,36

II.1.b) Méthode de Rinkel

Une seconde méthode, exploitée par Rinkel en 1929, consiste à mesurer la distance maximale L parcourue par le piston
avant qu’il ne remonte pour la première fois. Le piston est lâché en x = 0 sans vitesse initiale. On utilise ici une méthode
énergétique afin de déterminer l’expression de L.

23) Donner, en faisant intervenir les grandeurs m, g, x et ẋ, les expressions de l’énergie cinétique Ec du piston et de son
énergie potentielle de pesanteur Epp .
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II.2 Étude mécanique avec frottements II EXPÉRIENCE DE RÜCHARDT

Correction

On a :

Ec =
1

2
mẋ et Epp = −mgx

Il y a un signe moins car l’axe Ox est descendant.

24) Déterminer l’expression de l’énergie potentielle Epf associée à la force :
−→
Fp = −γkx−→ex.

Correction

Le lien entre une force et son énergie potentielle est :

−→
F = −

−−→
grad(Ep) ⇒

−→
Fp = −dEpf

dx
−→ex ⇒ −γkx = −dEpf

dx
⇒ Epf =

1

2
γkx2 + cte

25) Déterminer par une méthode énergétique l’expression de la distance L en fonction de g, k, γ et m.

Correction

On applique le théorème de l’énergie mécanique entre l’instant initial (vitesse nulle) et l’instant où la masse fait demi tour
(vitesse nulle).

∆Em = 0 ⇒ 0 = −mgL+
1

2
γkL2 ⇒ L =

2mg

γk

II.2) Étude mécanique avec frottements

Un pointage vidéo réalisé sur une expérience est montré sur la figure 11. L’amortissement de la courbe x(t) montre qu’il y
a présence de dissipation (frottements solides ou fluides, échanges thermiques, non uniformité de la pression, amortissement
d’ondes acoustiques...). L’objectif de cette partie est de modéliser cette courbe, sans chercher à comprendre le détail du
processus de dissipation.

Figure 11 – Données issues d’un pointage vidéo. L’échelle des x est approximative, celle des t est précise.

Nous supposons que l’équation du mouvement du piston s’écrit sous la forme suivante, et nous allons tester si ceci permet
une description correcte de l’enregistrement x(t) :

ẍ+
ω0

Q
ẋ+ ω2

0x = g

La pulsation propre de ce système est ω0, son expression théorique reste la même que précédemment. Le facteur de qualité
Q traduit la présence plus ou moins forte de dissipation. Le second membre g est constant.

26) En vous aidant de la figure 11, et sans faire de calculs, donner en justifiant une valeur approchée de Q. Comment se
nomme le type de régime dans lequel se trouve le système ?

Correction

Le nombre d’oscillations du système avant de revenir à l’équilibre permet de donner une valeur approchée du facteur de
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II.2 Étude mécanique avec frottements II EXPÉRIENCE DE RÜCHARDT

qualité. Ainsi, Q ≃ 10 . Le système est dans un régime pseudo-périodique.

On écrit la forme générale des solutions de l’équation homogène ainsi :

xH(t) =
[
A cos(Ωt) +B sin(Ωt)

]
e−µt avec : µ =

ω0

2Q
et Ω = ω0

√
1− 1

4Q2

27) Donner la forme générale des solutions x(t).

Correction

La forme générale des solutions s’écrit :

x(t) =
[
A cos(Ωt) +B sin(Ωt)

]
e−µt +

g

ω2
0

28) On suppose que la masse est lâchée en x = 0 sans vitesse initiale. Déterminer alors les expressions des constantes A et
B en fonction de Ω, µ, ω0 et g. Tracer l’allure de la solution x(t).

Correction

Les conditions initiales imposent :
x(0) = 0 = A+

g

ω2
0

⇒ A = − g

ω2
0

et
ẋ(0) = 0 = −µA+ΩB ⇒ B = − g

ω2
0

× µ

Ω

Ainsi,

x(t) =
g

ω2
0

− g

ω2
0

[
cos(Ωt) +

µ

Ω
sin(Ωt)

]
e−µt

Graphe :

29) Y a-t-il une différence significative entre la période propre T0 et la pseudo-période T ? Justifier.

Correction

On a :

T0 =
2π

ω0
et T =

2π

Ω
=

2π

ω0

√
1− 1

4Q2

⇒ T0

T
=

√
1− 1

4Q2
≃ ν0, 999 avec : Q ≃ 10

Il n’y a donc pas de différence significative.

30) Un modèle des données est représenté figure 12. En utilisant une de vos expressions précédentes, et les valeurs numériques
en légende de la figure, en déduire une valeur approchée de Q.
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III DÉTECTEUR DE MÉTAUX

Figure 12 – Données et modèle du type C +
[
A cos(Ωt) +B sin(Ωt)

]
e−µt. Le programme retourne, en unité cohérente SI :

Ω = 5,83, µ = 0,30, A = −0,43, B = −0,059 et C = 0,53.

Correction

D’après la question précédente, ω0 ≃ Ω. Ainsi,

µ =
ω0

2Q
=≃ Ω

2Q
⇒ Q =

Ω

2µ
= 9,7

31) Un second modèle, présenté figure 13, est en meilleur accord avec les données. Proposer une cause physique possible à
l’existence du terme supplémentaire en D × t.

Figure 13 – Données et modèle du type C+
[
A cos(Ωt)+B sin(Ωt)

]
e−µt+Dt. Le programme retourne, en unité cohérente

SI : Ω = 5,82, µ = 0,29, A = −0,42, B = −0,037, C = 0,47 et D = 0,011.

Correction

On peut envisager comme cause physique la non-adiabaticité de la transformation : il existe en réalité des échanges
thermiques entre le gaz enfermé et le milieu extérieur, qui pourrait expliquer cette dérive linéaire en t.

III ) Détecteur de métaux

Les détecteurs de métaux sont des instruments électroniques capables d’indiquer la présence de masses métalliques de nature et
de taille différentes. Les détecteurs fixes sont utilisés dans les aéroports, dans l’industrie agro-alimentaire ou pharmaceutique,
sur les réseaux routiers, etc. Les détecteurs mobiles peuvent servir à localiser et suivre le cheminement de canalisations
enterrées ou de fils électriques, à aider aux fouilles archéologiques, à repérer des engins dangereux, etc.

III.1) Oscillations libres d’un circuit RLC série

L’élément déterminant du détecteur de métal est la bobine, indispensable à la détection, qui est utilisée dans un montage
oscillateur. L’étude du fonctionnement de l’oscillateur va nous permettre de déterminer les caractéristiques de la bobine.

On réalise un circuit RLC série dont le schéma de principe est donné sur la figure 14. Il est constitué :
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III.1 Oscillations libres d’un circuit RLC série III DÉTECTEUR DE MÉTAUX

◦ d’un générateur basse fréquence (GBF), de résistance interne Rg et de force électromotrice e(t) ;
◦ d’une résistance variable R, de valeur comprise entre 0 Ω et 10,0 kΩ ;
◦ d’un condensateur de capacité variable C, de valeur comprise entre 0,01 µF et 1,00 µF ;
◦ d’une bobine réelle d’inductance L et de résistance r inconnues.

Figure 14 – Circuit RLC série

On pose :
◦ Rt = R+Rg + r la résistance totale du circuit ;

◦ ω0 =
1√
LC

sa pulsation propre ;

◦ Q =
Lω0

Rt
=

1

Rt

√
L

C
le facteur de qualité correspondant.

32) Montrer que l’équation différentielle satisfaite par la tension vc aux bornes du condensateur se met sous la forme :

d2vc
dt2

+
ω0

Q

dvc
dt

+ ω2
0 vc(t) = ω2

0 e(t)

Correction

La loi des mailles s’écrit :
e(t) = vc +Rti+ L

di

dt
avec : i = C

dvc
dt

Ce qui donne bien l’équation demandée.

On suppose que Q >
1

2
.

33) En régime libre e(t) = 0, montrer que la pseudo-période T des oscillations peut s’écrire T =
T0√

1− 1

4Q2

et déterminer

l’expression littérale de T0.

Correction

Pour Q > 1/2 les racines de l’équation caractéristique sont complexes r = − ω0

2Q
± jω0

√
1− 1

4Q2
,. On en déduit la pseudo

pulsation et la pseudo-période :

Ω = ω

√
1− 1

4Q2
⇒ T =

2π

Ω
=

T0√
1− 1

4Q2

avec : T0 =
2π

ω0
= 2π

√
LC

34) En déduire que l’on peut écrire T 2 =
aC

1− bC
et exprimer a et b en fonction des caractéristiques du circuit.

Correction
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III.1 Oscillations libres d’un circuit RLC série III DÉTECTEUR DE MÉTAUX

Si l’on remplace Q et T0 par leurs expressions, on trouve bien T 2 =
aC

1− bC
avec a = 4π2L et b =

R2
t

4L

La pseudo-période a été mesurée pour différentes valeurs de la capacité C ; la fonction T 2 a été tracée en fonction de C. Une
modélisation affine a été superposée à ces données.

Figure 15 – Carré de la pseudo-période en fonction de la capacité. Modélisation affine : coefficient de corrélation 0,999 ;
ordonnée à l’origine −3,0× 10−9 SI ; pente 3,3 SI.

35) En déduire la valeur de l’inductance de la bobine en expliquant la démarche et en justifiant d’éventuelles approximations.

Correction

La modélisation affine semble cohérente avec les données expérimentales (d’après le coefficient de corrélation, même si
celui-ci n’est pas toujours un bon indicateur), ce qui suppose que bC ≪ 1, alors T 2 ≃ aC. La pente obtenue donne L :

4π2L = 3,3 SI ⇒ L = 83,6 mH

L’hypothèse sur b est valable si et seulement si Rt ≪ 2

√
L

C
= 2,60 kΩ.

On appelle résistance critique totale, Rct = Rc + Rg + r, la valeur de la résistance totale du circuit permettant d’atteindre
le régime critique, la résistance Rc étant simplement appelée résistance critique. Aucune hypothèse n’est faite sur la valeur
de Q.

36) Montrer que la résistance critique totale vaut Rct = 2

√
L

C
.

Correction

Le régime critique s’obtient pour un discriminant nul, soit Q = 1/2. Alors Rct = 2

√
L

C
.

Tous les autres paramètres étant fixés, la réponse du circuit à un échelon de tension donne lieu à différents régimes selon
la valeur de la résistance variable R. En voie 1 de l’oscilloscope, l’échelon de tension ; en voie 2, la tension aux bornes du
condensateur, on superpose les réponses du circuit.
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III.2 Oscillateur quasi-sinusoïdal III DÉTECTEUR DE MÉTAUX

Figure 16 – Superposition des réponses du circuit (tension aux bornes du condensateur) soumis à un échelon de tension,
pour trois valeurs différentes de R.

37) Identifier et nommer les trois régimes associés aux courbes 1, 2 et 3 de la figure 16.

Correction

On remarque que la courbe 1 est un régime apériodique (monotone), la courbe 3 un régime pseudo-périodique (avec
dépassement), donc la courbe 2 est le régime critique car il est le plus rapide des trois.

III.2) Oscillateur quasi-sinusoïdal

III.2.a) Montage à résistance négative

Les pertes par effet Joule empêchent le maintien des oscillations libres du circuit RLC. Afin de les entretenir, le montage doit
comporter une source d’énergie. Celle-ci est apportée par un amplificateur linéaire intégré, ou ALI, qui est un composant
électronique dont l’alimentation ne sera pas représentée et dont le fonctionnement idéal est décrit lorsqu’il est nécessaire. En
plus de l’ALI, le montage étudié (figure 17) comporte 3 résistances dont une variable, la résistance R3.

Figure 17 – Montage à résistance négative.

38) Sachant que le fonction de l’ALI est telle que i− = 0, déterminer la relation liant ve, vs, R3 et i.

Correction

Loi d’Ohm pour la résistance variable : ve − vs = R3i

39) Sachant que le fonction de l’ALI est telle que i+ = 0 et que v+ = v−, déterminer la relation liant ve, vs, R1 et R2.
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III.2 Oscillateur quasi-sinusoïdal III DÉTECTEUR DE MÉTAUX

Correction

Pont diviseur de tension (avec v+ = ve) :

ve =
R2

R1 +R2
vs

40) En déduire que l’on peut écrire ve = Rni, où Rn est une grandeur négative homogène à une résistance, que l’on exprimera
en fonction de R1, R2 et R3.

Correction

En combinant les deux relations précédentes, il vient :

ve = R3i+ vs = R3i+
R1 +R2

R2
ve ⇒ ve

(
1− R1 +R2

R2

)
= R3i ⇒ ve = Rni avec : Rn = −R2R3

R1

III.2.b) Circuit oscillateur de référence

On étudie maintenant le circuit constitué de l’association des deux circuits précédents (figures 14 et 17), dont le schéma est
représenté sur la figure 18.

Figure 18 – Circuit oscillateur

41) Montrer que l’équation différentielle satisfaite par l’intensité i(t) du circuit de l’oscillateur se met sous la forme :

d2i

dt2
+ 2λω0

di

dt
+ ω2

0 i(t) = 0 avec : ω0 =
1√
LC

et λ =
R+ r +Rn

2

√
C

L

Correction

La loi des mailles s’écrit :
vc = (R+ r +Rn) i+ L

di

dt
avec : i = −C

dvc
dt

car le condensateur est en convention générateur...

Ce qui donne bien l’expression demandée.

42) Déterminer la valeur de Rn qui conduit à des oscillations purement harmoniques non amorties. Quelle est la source
d’énergie permettant de compenser l’effet Joule présent dans les résistances du montage ?

Correction

Pour avoir des oscillations non amorties (OH), il faut annuler le terme d’ordre 1, donc λ = 0 soit : Rn = − (R+ r)

La source d’énergie du montage provient de l’alimentation (polarisation) de l’ALI par deux générateurs de tension continue.
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